Galleria mellonella apolipophorin III – an apolipoprotein with anti-Legionella pneumophila activity

Agnieszka Zdybicka-Barabas, Marta Palusińska-Szysz, Wiesław I. Gruszecki, Paweł Mak, Małgorzata Cytryńska

The greater wax moth Galleria mellonella has been exploited worldwide as an alternative model host for studying pathogenicity and virulence factors of different pathogens, including Legionella pneumophila, a causative agent of a severe form of pneumonia called Legionnaires' disease. An important role in the insect immune response against invading pathogens is played by apolipophorin III (apoLp-III), a lipid- and pathogen associated molecular pattern-binding protein able to inhibit growth of some Gram-negative bacteria, including Legionella dumoffii. In the present study, anti-L. pneumophila activity of G. mellonella apoLp-III and the effects of the interaction of this protein with L. pneumophila cells are demonstrated. Alterations in the bacteria cell surface occurring upon apoLp-III treatment, revealed by Fourier transform infrared (FTIR) spectroscopy and atomic force microscopy, are also documented. ApoLp-III interactions with purified L. pneumophila LPS, an essential virulence factor of the bacteria, were analysed using electrophoresis and immunoblotting with anti-apoLp-III antibodies. Moreover, FTIR spectroscopy was used to gain detailed information on the type of conformational changes in L. pneumophila LPS and G. mellonella apoLp-III induced by their mutual interactions. The results indicate that apoLp-III binding to components of bacterial cell envelope, including LPS, may be responsible for anti-L. pneumophila activity of G. mellonella apoLp-III.